Open Category Classification by Adversarial Sample Generation

نویسندگان

  • Yang Yu
  • Wei-Yang Qu
  • Nan Li
  • Zimin Guo
چکیده

In real-world classification tasks, it is difficult to collect training samples from all possible categories of the environment. Therefore, when an instance of an unseen class appears in the prediction stage, a robust classifier should be able to tell that it is from an unseen class, instead of classifying it to be any known category. In this paper, adopting the idea of adversarial learning, we propose the ASG framework for open-category classification. ASG generates positive and negative samples of seen categories in the unsupervised manner via an adversarial learning strategy. With the generated samples, ASG then learns to tell seen from unseen in the supervised manner. Experiments performed on several datasets show the effectiveness of ASG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative OpenMax for Multi-Class Open Set Classification

We present a conceptually new and flexible method for multi-class open set classification. Unlike previous methods where unknown classes are inferred with respect to the feature or decision distance to the known classes, our approach is able to provide explicit modelling and decision score for unknown classes. The proposed method, called Generative OpenMax (G-OpenMax), extends OpenMax by employ...

متن کامل

Detecting Adversarial Samples Using Density Ratio Estimates

Machine learning models, especially based on deep learning are used in everyday applications ranging from self driving cars to medical diagnostics. However, it is easy to trick such models using adversarial samples, indistinguishable from real samples to human eye, such samples can lead to incorrect classifications. Impact of adversarial samples is far-reaching and efficient detection of advers...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Adversarial Perturbations Against Deep Neural Networks for Malware Classification

Deep neural networks, like many other machine learning models, have recently been shown to lack robustness against adversarially crafted inputs. These inputs are derived from regular inputs by minor yet carefully selected perturbations that deceive machine learning models into desired misclassifications. Existing work in this emerging field was largely specific to the domain of image classifica...

متن کامل

Task Specific Adversarial Cost Function

The cost function used to train a generative model should fit the purpose of the model. If the model is intended for tasks such as generating perceptually correct samples, it is beneficial to maximise the likelihood of a sample drawn from the model, Q, coming from the same distribution as the training data, P . This is equivalent to minimising the Kullback-Leibler (KL) distance, KL[Q‖P ]. Howev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017